Effect of Dietary Manganese on the Growth Performance, Lipid Metabolism, and Antioxidant Capacity in the Post-Larval Coho Salmon (Oncorhynchus kisutch)

Author:

Liu Dongwu1,Li Lingyao2,Zhang Qin3,Yu Hairui2ORCID

Affiliation:

1. School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China

2. Weifang Key Laboratory of Coho Salmon Culturing Facility Engineering, Institute of Modern Facility Fisheries, College of Biology and Oceanography, Weifang University, Weifang 261061, China

3. Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, School of Marine Science and Biotechnology, Guangxi Minzu University, Nanning 530008, China

Abstract

In this study, post-larval coho salmon Oncorhynchus kisutch (initial weight 0.37 ± 0.03 g) were fed with 6 experimental diets with increasing manganese (Mn) content (2.4, 8.5, 14.8, 19.8, 24.6, and 33.7 mg kg−1) for 12 weeks. Our results indicated that the feed conversion rate (FCR), specific growth rate (SGR), condition factor (CF), crude protein, moisture, crude lipid, ash, whole-body Mn, and vertebral Mn were affected by the elevation of Mn content in the diet. The activities of hepatic GSH-PX, Mn-SOD, and CAT were enhanced with increasing Mn content in the diet and reached the highest value at 19.8 mg kg−1 Mn. However, the level of hydrogen peroxide (H2O2), superoxide anion (O2·−), and malondialdehyde (MDA) was reduced with increasing Mn content in the diet. In addition, the activity of hepatic lipase (HL) and lipoprotein lipase (LPL) was increased with the elevation of dietary Mn content and reached a peak value at 14.8 mg kg−1 Mn. The activity of fatty acid synthetase (FAS) and the content of nonesterified fatty acid (NEFA) were increased following the elevation of Mn content from 2.4 to 19.8 mg kg−1 in the diet. The results indicated that the appropriate dietary Mn supplementation improved the feeding efficiency, lipid metabolism, and antioxidant capacity of coho salmon. The dietary Mn requirement for post-larval coho salmon was 17.35 mg kg−1 and 19.75 mg kg−1 based on the SGR and FCR, respectively. An optimal dietary level of Mn enhances hepatic lipid metabolism, and the signaling pathway of PI3K/AKT/mTOR may be involved in regulating the activity of enzymes related to lipid metabolism.

Funder

Shandong Provincial Key Research and Development Program

Scientific Research Foundation for the Introduced Talents of Guangxi Minzu University

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3