Combination of Radiomics Features and Functional Radiosensitivity Enhances Prediction of Acute Pulmonary Toxicity in a Prospective Validation Cohort of Patients with a Locally Advanced Lung Cancer Treated with VMAT-Radiotherapy

Author:

Bourbonne VincentORCID,Lucia François,Jaouen Vincent,Pradier Olivier,Visvikis Dimitris,Schick Ulrike

Abstract

Introduction: The standard of care for people with locally advanced lung cancer (LALC) who cannot be operated on is (chemo)-radiation. Despite the application of dose constraints, acute pulmonary toxicity (APT) still often occurs. Prediction of APT is of paramount importance for the development of innovative therapeutic combinations. The two models were previously individually created. With success, the Rad-model incorporated six radiomics functions. After additional validation in prospective cohorts, a Pmap-model was created by identifying a specific region of the right posterior lung and incorporating several clinical and dosimetric parameters. To create and test a novel model to forecast the risk of APT in two cohorts receiving volumetric arctherapy radiotherapy (VMAT), we aimed to include all the variables in this study. Methods: In the training cohort, we retrospectively included all patients treated by VMAT for LALC at one institution between 2015 and 2018. APT was assessed according to the CTCAE v4.0 scale. Usual clinical and dosimetric features, as well as the mean dose to the pre-defined Pmap zone (DMeanPmap), were processed using a neural network approach and subsequently validated on an observational prospective cohort. The model was evaluated using the area under the curve (AUC) and balanced accuracy (Bacc). Results: 165 and 42 patients were enrolled in the training and test cohorts, with APT rates of 22.4 and 19.1%, respectively. The AUCs for the Rad and Pmap models in the validation cohort were 0.83 and 0.81, respectively, whereas the AUC for the combined model (Comb-model) was 0.90. The Bacc for the Rad, Pmap, and Comb models in the validation cohort were respectively 78.7, 82.4, and 89.7%. Conclusion: The accuracy of prediction models were increased by combining radiomics, DMeanPmap, and common clinical and dosimetric features. The use of this model may improve the evaluation of APT risk and provide access to novel therapeutic alternatives, such as dose escalation or creative therapy combinations.

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3