Systematic Analysis of Cellular Signaling Pathways and Therapeutic Targets for SLC45A3:ERG Fusion-Positive Prostate Cancer

Author:

Kim JongsuORCID,Hwang Kyung WonORCID,Lee Hye JungORCID,Kim Hong SookORCID

Abstract

ETS-related gene (ERG) fusion affects prostate cancer depending on the degree of expression of ERG. Solute Carrier Family 45 Member 3 (SLC45A3) is the second-most common 5′ partner gene of ERG rearrangement. However, the molecular pathological features of SLC45A3:ERG (S:E) fusion and therapeutic methods have not been studied at all. S:E fusion-positive cancers (n = 10) were selected from the Tumor Fusion Gene Data Portal website. Fusion-negative cancers (n = 50) were selected by sorting ERG expression level in descending order and selecting the bottom to 50th sample. Totally, 1325 ERG correlated genes were identified by a Pearson correlation test using over 0.3 of absolute correlation coefficiency (|R| > 0.3). Pathway analysis was performed using over-representation analysis of correlated genes, and seven cancer-related pathways (focal adhesion kinase (FAK)/PI3K-Akt, JAK-STAT, Notch, receptor tyrosine kinase/PDGF, TGF-β, VEGFA, and Wnt signaling) were identified. In particular, focal adhesion kinase (FAK)/PI3K-Akt signaling and JAK-STAT signaling were significantly enriched in S:E fusion-positive prostate cancer. We further identified therapeutic targets and candidate drugs for S:E fusion-positive prostate cancer using gene–drug network analysis. Interestingly, PDGFRA and PDGFRB were the most frequently predicted therapeutic targets, and imatinib targeted both genes. In this study, we provide extensive information on cellular signaling pathways involved in S:E fusion-positive prostate cancer and also suggest therapeutic methods.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

Reference29 articles.

1. Cancer statistics, 2020;Siegel;CA Cancer J. Clin.,2020

2. The oncogene ERG: A key factor in prostate cancer;Adamo;Oncogene,2016

3. ETS Gene Fusions in Prostate Cancer: From Discovery to Daily Clinical Practice;Tomlins;Eur. Urol.,2009

4. DNA Damage Promotes TMPRSS2-ERG Oncoprotein Destruction and Prostate Cancer Suppression via Signaling Converged by GSK3β and WEE1;Hong;Mol. Cell,2020

5. miR-221 Is down-regulated in TMPRSS2:ERG fusion-positive prostate cancer;Gordanpour;Anticancer Res.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3