Improving Machine Learning Diabetes Prediction Models for the Utmost Clinical Effectiveness

Author:

Shin JuyoungORCID,Lee JoonyubORCID,Ko TaehoonORCID,Lee Kanghyuck,Choi Yera,Kim Hun-SungORCID

Abstract

The early prediction of diabetes can facilitate interventions to prevent or delay it. This study proposes a diabetes prediction model based on machine learning (ML) to encourage individuals at risk of diabetes to employ healthy interventions. A total of 38,379 subjects were included. We trained the model on 80% of the subjects and verified its predictive performance on the remaining 20%. Furthermore, the performances of several algorithms were compared, including logistic regression, decision tree, random forest, eXtreme Gradient Boosting (XGBoost), Cox regression, and XGBoost Survival Embedding (XGBSE). The area under the receiver operating characteristic curve (AUROC) of the XGBoost model was the largest, followed by those of the decision tree, logistic regression, and random forest models. For the survival analysis, XGBSE yielded an AUROC exceeding 0.9 for the 2- to 9-year predictions and a C-index of 0.934, while the Cox regression achieved a C-index of 0.921. After lowering the threshold from 0.5 to 0.25, the sensitivity increased from 0.011 to 0.236 for the 2-year prediction model and from 0.607 to 0.994 for the 9-year prediction model, while the specificity showed negligible changes. We developed a high-performance diabetes prediction model that applied the XGBSE algorithm with threshold adjustment. We plan to use this prediction model in real clinical practice for diabetes prevention after simplifying and validating it externally.

Funder

Daewoong Pharmaceutical company

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

Reference47 articles.

1. An investigation of the use of a general health examination center;J. Korean Acad. Fam. Med.,1991

2. National screening program for the transitional ages in Korea;J. Korean Med. Assoc.,2010

3. National health examination expansion policy;J. Korean Med. Assoc.,2017

4. Population-based screening for cancer: Hope and hype;Nat. Rev. Clin. Oncol.,2016

5. Environmental and genetic contributions to diabetes;Metabolism,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3