Abstract
Many papers on fuzzy risk analysis calculate the similarity between fuzzy numbers. Usually, they use symmetric and reflexive similarity measures between parameters of fuzzy sets or “centers of gravity” of generalized fuzzy numbers represented by real numbers. This paper studies bipolar similarity functions (fuzzy relations) defined on a domain with involutive (negation) operation. The bipolarity property reflects a structure of the domain with involutive operation, and bipolar similarity functions are more suitable for calculating a similarity between elements of such domain. On the set of real numbers, similarity measures should take into account symmetry between positive and negative numbers given by involutive negation of numbers. Another reason to consider bipolar similarity functions is that these functions define measures of correlation (association) between elements of the domain. The paper gives a short introduction to the theory of correlation functions defined on sets with an involutive operation. It shows that the dissimilarity function generating Pearson’s correlation coefficient is bipolar. Further, it proposes new normalized similarity and dissimilarity functions on the set of real numbers. It shows that non-bipolar similarity functions have drawbacks in comparison with bipolar similarity functions. For this reason, bipolar similarity measures can be recommended for use in fuzzy risk analysis. Finally, the correlation functions between numbers corresponding to bipolar similarity functions are proposed.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference30 articles.
1. A Novel Risk Assessment Methodology – A Case Study of the PRISM Methodology in a Compliance Management Sensitive Sector
2. Fuzzy Logic-based Risk Assessment Framework to Evaluate Physiological Parameters;Tóth-Laufer;Acta Polytech. Hung.,2015
3. The summarized weighted mean of maxima defuzzification and its application at the end of the risk assessment process;Portik;Acta Polytech. Hung.,2014
4. Fuzzy Sets, Natural Language Computations and Risk Analysis;Schmucker,1984
5. Fuzzy risk analysis based on similarity measures of generalized fuzzy numbers
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献