Author:
Ding Yuhua,Tang Zhenmin,Wang Fei
Abstract
Single-sample face recognition is a very challenging problem, where each person has only one labeled training sample. It is difficult to describe unknown facial variations. In this paper, we propose a shared generative adversarial network (SharedGAN) to expand the gallery dataset. Benefiting from the shared decoding network, SharedGAN requires only a small number of training samples. After obtaining the generated samples, we join them into a large public dataset. Then, a deep convolutional neural network is trained on the new dataset. We use the well-trained model for feature extraction. With the deep convolutional features, a simple softmax classifier is trained. Our method has been evaluated on AR, CMU-PIE, and FERET datasets. Experimental results demonstrate the effectiveness of SharedGAN and show its robustness for single sample face recognition.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献