A Comparative Study of Strain Rate Constitutive and Machine Learning Models for Flow Behavior of AZ31-0.5 Ca Mg Alloy during Hot Deformation

Author:

Chaudry Umer MasoodORCID,Jaafreh Russlan,Malik AbdulORCID,Jun Tea-SungORCID,Hamad Kotiba,Abuhmed TamerORCID

Abstract

In this study, isothermal compression tests of highly ductile AZ31-0.5Ca Mg alloys were conducted at different strain rates (0.001–0.1 s−1) and temperatures (423–523 K) along with extruded direction. The flow stress characteristics were evaluated at elevated temperatures. In addition, a strain-dependent constitutive model based on the Arrhenius equation and machine learning (ML) were constructed to evaluate the stress–strain flow behavior. To build the ML model, experimental data containing temperature, strain, and strain rate were used to train various ML algorithms. The results show that under lower temperatures and higher strain rates, the curves exhibited strain hardening, which is due to the higher activation energy, while when increasing the temperature at a fixed strain rate, the strain hardening decreased and curves were divided into two regimes. In the first regime, a slight increase in strain hardening occurred, while in the second regime, dynamic recrystallization and dynamic recovery controlled the deformation mechanism. Our ML results demonstrate that the ML model outperformed the strain-dependent constitutive model.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3