Nearest Descent, In-Tree, and Clustering

Author:

Qiu TengORCID,Li YongjieORCID

Abstract

Clustering aims at discovering the natural groupings in a dataset, prevalent in many disciplines that involve multivariate data analysis. In this paper, we propose a physically inspired graph-theoretical clustering method, which first makes the data points organized into an attractive graph, called In-Tree, via a physically inspired rule, called Nearest Descent (ND). The rule of ND works to select the nearest node in the descending direction of potential as the parent node of each node, which is fundamentally different from the classical Gradient Descent. The constructed In-Tree proves a very good candidate for clustering due to its particular features and properties. In the In-Tree, the original clustering problem is reduced to a problem of removing the inter-cluster edges from this graph. Pleasingly, those inter-cluster edges are usually so distinguishable that they can be easily determined by different automatic edge-cutting methods. We also propose a visualized strategy to validate the effectiveness of the automatic edge-cutting methods. The experimental results reveal that the proposed method is superior to the related clustering methods. The results also reveal the characteristics of different automatic cutting methods and the meaningfulness of the visualized strategy in increasing the reliability of the clustering results in practice.

Funder

Guangdong Key R&D Research Project

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference73 articles.

1. Data clustering: 50 years beyond K-means;Pattern Recognit. Lett.,2010

2. Survey of clustering algorithms;IEEE Trans. Neural Netw.,2005

3. Theodoridis, S., and Koutroumbas, K. (2009). Pattern Recognition, Elsevier. [4th ed.].

4. Computational cluster validation in post-genomic data analysis;Bioinformatics,2005

5. Macqueen, J. Some Methods for Classification and Analysis of Multivariate Observations. Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Potential Evaluation Method for Aggregated Demand Response Resources Based on User Pattern Recognition;2023 6th International Conference on Energy, Electrical and Power Engineering (CEEPE);2023-05-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3