Multi-Sensor Spectral Imaging of Geological Samples: A Data Fusion Approach Using Spatio-Spectral Feature Extraction

Author:

Lorenz SandraORCID,Seidel Peter,Ghamisi Pedram,Zimmermann RobertORCID,Tusa Laura,Khodadadzadeh MahdiORCID,Contreras I. CeciliaORCID,Gloaguen RichardORCID

Abstract

Rapid, efficient and reproducible drillcore logging is fundamental in mineral exploration. Drillcore mapping has evolved rapidly in the recent decade, especially with the advances in hyperspectral spectral imaging. A wide range of imaging sensors is now available, providing rapidly increasing spectral as well as spatial resolution and coverage. However, the fusion of data acquired with multiple sensors is challenging and usually not conducted operationally. We propose an innovative solution based on the recent developments made in machine learning to integrate such multi-sensor datasets. Image feature extraction using orthogonal total variation component analysis enables a strong reduction in dimensionality and memory size of each input dataset, while maintaining the majority of its spatial and spectral information. This is in particular advantageous for sensors with very high spatial and/or spectral resolution, which are otherwise difficult to jointly process due to their large data memory requirements during classification. The extracted features are not only bound to absorption features but recognize specific and relevant spatial or spectral patterns. We exemplify the workflow with data acquired with five commercially available hyperspectral sensors and a pair of RGB cameras. The robust and efficient spectral-spatial procedure is evaluated on a representative set of geological samples. We validate the process with independent and detailed mineralogical and spectral data. The suggested workflow provides a versatile solution for the integration of multi-source hyperspectral data in a diversity of geological applications. In this study, we show a straight-forward integration of visible/near-infrared (VNIR), short-wave infrared (SWIR) and long-wave infrared (LWIR) data for sensors with highly different spatial and spectral resolution that greatly improves drillcore mapping.

Funder

Helmholtz Association

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference41 articles.

1. Sensor-Based Sorting;Wotruba,2010

2. HyLogger-3, a visible to shortwave and thermal infrared reflectance spectrometer system for drill core logging: Functional description;Schodlok;Aust. J. Earth Sci.,2016

3. AUTOMATED DRILL CORE LOGGING USING VISIBLE AND NEAR-INFRARED REFLECTANCE SPECTROSCOPY: A CASE STUDY FROM THE OLYMPIC DAM IOCG DEPOSIT, SOUTH AUSTRALIA

4. Hyperspectral interpretation of selected drill cores from orogenic gold deposits in central Victoria, Australia

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3