Author:
Zhang ,Tu ,Li ,Cui ,Zheng
Abstract
Prestress detection of structures has been puzzling structural engineers for a long time. The inductance–capacitance (LC) electromagnetic oscillation method has shown a potential solution to this problem. It connects the two ends of a steel strand, which is simulated as an inductor, to the oscillation circuit, and the stress of the steel strand can be calculated by measuring the oscillation frequency of the circuit through a frequency meter. In the previous studies, the authors found that stress-frequency relation of 1.2 m steel strand was negatively correlated, while the stress-frequency of 10 m steel strand was positively correlated. To verify this conflict, two kinds of electrical inductance models of steel strands were established to fit the lengths. With the models, the stress-frequency relations of steel strands with different lengths were analyzed. After that, two kinds of experimental platforms were set up, and a series of stress-frequency relationship tests were carried out with 1.2 m, 5 m, 10 m and 15 m steel strands. Theoretical analysis and experimental results show that when the length is less than 2.013 m, the stress and oscillation frequencies are negatively correlated; when length is more than 2.199 m, the stress and oscillation frequencies are positively correlated; while when length is between 2.013 m and 2.199 m, the stress-frequency relationship is in transit from negative correlation to positive correlation.
Funder
the Program for Innovation Team Building at Institutions of Higher Education in Chongqing
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献