Preliminary Study on Greywater Treatment Using Nonwoven Textile Filters

Author:

Spychała Marcin,Nguyen Thanh Hung

Abstract

The objective of the study was to evaluate the usefulness of novel nonwoven textile filter technology for greywater treatment. This technology had already been used on a lab scale for septic tank effluent treatment; however, this study is the first time it has been used for greywater treatment. The set-up period with septic tank effluent (STE) feeding was significantly shorter than that of greywater feeding. The average capacities of both filter types were practically the same: 1.0–1.4 cm d−1. The relatively high efficiencies of chemical oxygen demand (CODCr) and biochemical oxygen demand (BOD5) removal (58.8–71.6% and 56.7–79.8%, respectively) were obtained thanks to the relatively low filtration velocity and effective diffusion of atmospheric air into the greywater. The relatively high efficiency of total suspended solids (TSS) removal (67.0–88.4%) was obtained by reducing the effective pore size of the filtration layer due to high biomass concentration and accumulation of suspended solids. Thanks to hydrostatic pressure, the filters can work practically with very low energy consumption. The pollutants removal efficiencies were satisfactory in respect to simple construction and maintenance, low investment and operational costs.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference41 articles.

1. Water Scarcityhttps://www.worldwildlife.org/threats/water-scarcity

2. Greywater reuse: towards sustainable water management

3. Economic feasibility of on-site greywater reuse in multi-storey buildings

4. Greywater Reuse;Gross,2015

5. Parameters Affecting Greywater Quality and Its Safety for Reuse;Adi;Sci. Total Environ.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3