Greenness and Actual Evapotranspiration in the Unrestored Riparian Corridor of the Colorado River Delta in Response to In-Channel Water Deliveries in 2021 and 2022

Author:

Nagler Pamela L.1ORCID,Sall Ibrahima2ORCID,Gomez-Sapiens Martha3,Barreto-Muñoz Armando4,Jarchow Christopher J.4,Flessa Karl3,Didan Kamel4

Affiliation:

1. U.S. Geological Survey, Southwest Biological Science Center, Tucson, AZ 85719, USA

2. Department of Agricultural and Resource Economics, University of Arizona, Tucson, AZ 85719, USA

3. Department of Geosciences, University of Arizona, 1040 E. 4th St., Tucson, AZ 85721, USA

4. Department of Biosystems Engineering, University of Arizona, Tucson, AZ 85721, USA

Abstract

Natural resource managers may utilize remotely sensed data to monitor vegetation within their decision-making frameworks for improving habitats. Under binational agreements between the United States and Mexico, seven reaches were targeted for riparian habitat enhancement. Monitoring was carried out using Landsat 8 16-day intervals of the two-band enhanced vegetation index 2 (EVI2) for greenness and actual evapotranspiration (ETa). In-channel water was delivered in 2021 and 2022 at four places in Reach 4. Three reaches (Reaches 4, 5 and 7) showed no discernable difference in EVI2 from reaches that did not receive in-channel water (Reaches 1, 2, 3 and 6). EVI2 in 2021 was higher than 2020 in all reaches except Reach 3, and EVI2 in 2022 was lower than 2021 in all reaches except Reach 7. ET(EVI2) was higher in 2020 than in 2021 and 2022 in all seven reaches; it was highest in Reach 4 (containing restoration sites) in all years. Excluding restoration sites, compared with 2020, unrestored reaches showed that EVI2 minimally increased in 2021 and 2022, while ET(EVI2) minimally decreased despite added water in 2021–2022. Difference maps comparing 2020 (no-flow year) to 2021 and 2022 (in-channel flows) reveal areas in Reaches 5 and 7 where the in-channel flows increased greenness and ET(EVI2).

Funder

U.S. Geological Survey (USGS) under Ecosystems Invasive Species Program and the Desert Southwest Cooperative Ecosystem Studies Unit

National Aeronautics and Space Administration

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3