2-Butoxytetrahydrofuran and Palmitic Acid from Holothuria scabra Enhance C. elegans Lifespan and Healthspan via DAF-16/FOXO and SKN-1/NRF2 Signaling Pathways

Author:

Jattujan PrapapornORCID,Srisirirung Sirin,Watcharaporn Warisra,Chumphoochai Kawita,Kraokaew Pichnaree,Sanguanphun Tanatcha,Prasertsuksri Prachayaporn,Thongdechsri Salinthip,Sobhon Prasert,Meemon KraiORCID

Abstract

Extracts from a sea cucumber, Holothuria scabra, have been shown to exhibit various pharmacological properties including anti-oxidation, anti-aging, anti-cancer, and anti-neurodegeneration. Furthermore, certain purified compounds from H. scabra displayed neuroprotective effects against Parkinson’s and Alzheimer’s diseases. Therefore, in the present study, we further examined the anti-aging activity of purified H. scabra compounds in a Caenorhabditis elegans model. Five compounds were isolated from ethyl acetate and butanol fractions of the body wall of H. scabra and characterized as diterpene glycosides (holothuria A and B), palmitic acid, bis (2-ethylhexyl) phthalate (DEHP), and 2-butoxytetrahydrofuran (2-BTHF). Longevity assays revealed that 2-BTHF and palmitic acid could significantly extend lifespan of wild type C. elegans. Moreover, 2-BTHF and palmitic acid were able to enhance resistance to paraquat-induced oxidative stress and thermal stress. By testing the compounds’ effects on longevity pathways, it was shown that 2-BTHF and palmitic acid could not extend lifespans of daf-16, age-1, sir-2.1, jnk-1, and skn-1 mutant worms, indicating that these compounds exerted their actions through these genes in extending the lifespan of C. elegans. These compounds induced DAF-16::GFP nuclear translocation and upregulated the expressions of daf-16, hsp-16.2, sod-3 mRNA and SOD-3::GFP. Moreover, they also elevated protein and mRNA expressions of GST-4, which is a downstream target of the SKN-1 transcription factor. Taken together, the study demonstrated the anti-aging activities of 2-BTHF and palmitic acid from H. scabra were mediated via DAF-16/FOXO insulin/IGF and SKN-1/NRF2 signaling pathways.

Funder

Thammasat University

Mahidol University

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Reference47 articles.

1. Ageing: Definitions, mechanisms and the magnitude of the problem;Balcombe;Best Pract. Res. Clin. Gastroenterol.,2001

2. Ageing as a risk factor for neurodegenerative disease;Hou;Nat. Rev. Neurol.,2019

3. The Hallmarks of Aging;López-Otín;Cell,2013

4. Free Radicals and Extrinsic Skin Aging;Poljšak;Dermatol. Res. Pract.,2012

5. Oncogenic pathways and the electron transport chain: A dangeROS liaison;Raimondi;Br. J. Cancer,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3