AutoCellANLS: An Automated Analysis System for Mycobacteria-Infected Cells Based on Unstained Micrograph

Author:

Zhuang Yan,Zhao Xinzhuo,Huang ZhongbingORCID,Han Lin,Chen Ke,Lin Jiangli

Abstract

The detection of Mycobacterium tuberculosis (Mtb) infection plays an important role in the control of tuberculosis (TB), one of the leading infectious diseases in the world. Recent advances in artificial intelligence-aided cellular image processing and analytical techniques have shown great promises in automated Mtb detection. However, current cell imaging protocols often involve costly and time-consuming fluorescence staining, which has become a major bottleneck for procedural automation. To solve this problem, we have developed a novel automated system (AutoCellANLS) for cell detection and the recognition of morphological features in the phase-contrast micrographs by using unsupervised machine learning (UML) approaches and deep convolutional neural networks (CNNs). The detection algorithm can adaptively and automatically detect single cells in the cell population by the improved level set segmentation model with the circular Hough transform (CHT). Besides, we have designed a Cell-net by using the transfer learning strategies (TLS) to classify the virulence-specific cellular morphological changes that would otherwise be indistinguishable to the naked eye. The novel system can simultaneously classify and segment microscopic images of the cell populations and achieve an average accuracy of 95.13% for cell detection, 95.94% for morphological classification, 94.87% for sensitivity, and 96.61% for specificity. AutoCellANLS is able to detect significant morphological differences between the infected and uninfected mammalian cells throughout the infection period (2 hpi/12 hpi/24 hpi). Besides, it has overcome the drawback of manual intervention and increased the accuracy by more than 11% compared to our previous work, which used AI-aided imaging analysis to detect mycobacterial infection in macrophages. AutoCellANLS is also efficient and versatile when tailored to different cell lines datasets (RAW264.7 and THP-1 cell). This proof-of concept study provides a novel venue to investigate bacterial pathogenesis at a macroscopic level and offers great promise in the diagnosis of bacterial infections.

Funder

Applied Basic Research Program of Sichuan Province

Enterprise Commissioned Technology Development Project of Sichuan University

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3