Enzyme-Mediated Quenching of the Pseudomonas Quinolone Signal (PQS): A Comparison between Naturally Occurring and Engineered PQS-Cleaving Dioxygenases

Author:

Arranz San Martín AlbaORCID,Vogel Jan,Wullich Sandra C.,Quax Wim J.ORCID,Fetzner SusanneORCID

Abstract

The opportunistic pathogen Pseudomonas aeruginosa employs quorum sensing to govern the production of many virulence factors. Interference with quorum sensing signaling has therefore been put forward as an attractive approach to disarm this pathogen. Here, we analyzed the quorum quenching properties of natural and engineered (2-alkyl-)3-hydroxy-4(1H)-quinolone 2,4-dioxygenases (HQDs) that inactivate the P. aeruginosa signal molecule PQS (Pseudomonas quinolone signal; 2-heptyl-3-hydroxy-4(1H)-quinolone). When added exogenously to P. aeruginosa cultures, all HQDs tested significantly reduced the levels of PQS and other alkylquinolone-type secondary metabolites deriving from the biosynthetic pathway, such as the respiratory inhibitor 2-heptyl-4-hydroxyquinoline N-oxide. HQDs from Nocardia farcinica and Streptomyces bingchenggensis, which combine low KM values for PQS with thermal stability and resilience in the presence of P. aeruginosa exoproducts, respectively, attenuated production of the virulence factors pyocyanin and pyoverdine. A delay in mortality was observed when Galleria mellonella larvae were infected with P. aeruginosa suspensions treated with the S. bingchenggensis HQD or with inhibitors of alkylquinolone biosynthesis. Our data indicate that quenching of PQS signaling has potential as an anti-virulence strategy; however, an efficient anti-virulence therapy against P. aeruginosa likely requires a combination of agents addressing multiple targets.

Funder

European Commission

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3