Spreading of Aggregated α-Synuclein in Sagittal Organotypic Mouse Brain Slices

Author:

Uçar Buket,Stefanova NadiaORCID,Humpel Christian

Abstract

The accumulation of α-synuclein (α-syn) in the brain plays a role in synucleinopathies and it is hypothesized to spread in a prion-like fashion between connected brain regions. In the present study, we aim to investigate this spreading in well-characterized sagittal organotypic whole brain slices taken from postnatal wild type (WT) and transgenic mice overexpressing human α-syn under the promoter of proteolipid protein (PLP). Collagen hydrogels were loaded with monomers of human α-syn, as well as human and mouse pre-formed fibrils (PFFs), to allow local application and slow release. The spreading of α-syn was evaluated in different brain regions by immunohistochemistry for total α-syn and α-syn phosphorylated at the serine129 position (α-syn-P). The application of human and mouse PFFs of α-syn caused the aggregation and spreading of α-syn-P in the brain slices, which was pronounced the most at the region of hydrogel application and surrounding striatum, as well as along the median forebrain bundle. The organotypic slices from transgenic mice showed significantly more α-syn pathology than those from WT mice. The present study demonstrates that seeding with α-syn PFFs but not monomers induced intracellular α-syn pathology, which was significantly more prominent in brain slices with α-syn overexpression. This is consistent with the prion-like spreading theory of α-syn aggregates. The sagittal whole brain slices characterized in this study carry the potential to be used as a novel model to study α-syn pathology.

Funder

FWF Austrian Science Fund

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3