Differences in Medium-Induced Conformational Plasticity Presumably Underlie Different Cytotoxic Activity of Ricin and Viscumin

Author:

Volynsky PavelORCID,Maltseva DianaORCID,Tabakmakher ValentinORCID,Bocharov Eduard V.,Raygorodskaya Maria,Zakharova Galina,Britikova Elena,Tonevitsky Alexander,Efremov Roman

Abstract

Structurally similar catalytic subunits A of ricin (RTA) and viscumin (MLA) exhibit cytotoxic activity through ribosome inactivation. Ricin is more cytotoxic than viscumin, although the molecular mechanisms behind this difference are still poorly understood. To shed more light on this problem, we used a combined biochemical/molecular modeling approach to assess possible relationships between the activity of toxins and their structural/dynamic properties. Based on bioassay measurements, it was suggested that the differences in activity are associated with the ability of RTA and MLA to undergo structural/hydrophobic rearrangements during trafficking through the endoplasmic reticulum (ER) membrane. Molecular dynamics simulations and surface hydrophobicity mapping of both proteins in different media showed that RTA rearranges its structure in a membrane-like environment much more efficiently than MLA. Their refolded states also drastically differ in terms of hydrophobic organization. We assume that the higher conformational plasticity of RTA is favorable for the ER-mediated translocation pathway, which leads to a higher rate of toxin penetration into the cytoplasm.

Funder

Russian Foundation for Basic Research

Russian Science Foundation

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3