Abstract
Grapevine (Vitis vinifera) is a valuable crop in Europe for both economical and cultural reasons, but highly susceptible to Downy mildew (DM). The generation of resistant vines is of critical importance for a sustainable viticulture and can be achieved either by introgression of resistance genes in susceptible varieties or by mutation of Susceptibility (S) genes, e.g., by gene editing. This second approach offers several advantages: it maintains the genetic identity of cultivars otherwise disrupted by crossing and generally results in a broad-spectrum and durable resistance, but it is hindered by the poor knowledge about S genes in grapevines. Candidate S genes are Downy mildew Resistance 6 (DMR6) and DMR6-Like Oxygenases (DLOs), whose mutations confer resistance to DM in Arabidopsis. In this work, we show that grapevine VviDMR6-1 complements the Arabidopsis dmr6-1 resistant mutant. We studied the expression of grapevine VviDMR6 and VviDLO genes in different organs and in response to the DM causative agent Plasmopara viticola. Through an automated evaluation of causal relationships among genes, we show that VviDMR6-1, VviDMR6-2, and VviDLO1 group into different co-regulatory networks, suggesting distinct functions, and that mostly VviDMR6-1 is connected with pathogenesis-responsive genes. Therefore, VviDMR6-1 represents a good candidate to produce resistant cultivars with a gene-editing approach.
Subject
Molecular Biology,Biochemistry
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献