Research on the Prediction of Sustainable Safety Production in Building Construction Based on Text Data

Author:

Fan Jifei1,Wang Daopeng1,Liu Ping1,Xu Jiaming1

Affiliation:

1. School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China

Abstract

Given the complexity and variability of modern construction projects, safety risk management has become increasingly challenging, while traditional methods exhibit deficiencies in handling complex dynamic environments, particularly those involving unstructured text data. Consequently, this study proposes a text data-based risk prediction method for building construction safety. Initially, heuristic Chinese automatic word segmentation, which incorporates mutual information, information entropy statistics, and the TF-IDF algorithm, preprocesses text data to extract risk factor keywords and construct accident attribute variables. At the same time, the Spearman correlation coefficient is utilized to eliminate the multicollinearity between feature variables. Next, the XGBoost algorithm is employed to develop a model for predicting the risks associated with safe production. Its performance is optimized through three experimental scenarios. The results indicate that the model achieves satisfactory overall performance after hyperparameter tuning, with the prediction accuracy and F1 score reaching approximately 86%. Finally, the SHAP model interpretation technique identifies critical factors influencing the safety production risk in building construction, highlighting project managers’ attention to safety, government regulation, safety design, and emergency response as critical determinants of accident severity. The main objective of this study is to minimize human intervention in risk assessment and to construct a text data-based risk prediction model for building construction safety production using the rich empirical knowledge embedded in unstructured accident text, with the aim of reducing safety production accidents and promoting the sustainable development of construction safety in the industry. This model not only enables a paradigm shift toward intelligent risk control in safety production but also provides theoretical and practical insights into decision-making and technical support in safety production.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Gansu Province

Hongliu Outstanding Young Talents Support Program of Lanzhou University of Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3