A Comprehensive Overview of Recycled Glass as Mineral Admixture for Circular UHPC Solutions

Author:

Redondo-Pérez N. Marcela1ORCID,Redondo-Mosquera Jesús D.2ORCID,Abellán-García Joaquín1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Universidad Del Norte, Barranquilla 081007, Colombia

2. Department of Civil Engineering, Universidad de La Guajira, Riohacha 440002, Colombia

Abstract

This review article analyzes the influence of recycled glass (as sand and powder) beyond the durability, rheology and compressive strength of plain UHPC, even exploring flexural and direct tensile performance in fiber-reinforced UHPC. Interactions with other mineral admixtures like limestone powder, rice husk ash, fly ash, FC3R, metakaolin and slags, among others, are analyzed. Synergy with limestone powder improves rheology, reducing superplasticizer usage. Research highlights waste glass–UHPC mixtures with reduced silica fume and cement content by over 50% and nearly 30%, respectively, with compressive strengths exceeding 150 MPa, cutting costs and carbon footprints. Furthermore, with the proper fiber dosage, waste glass–UHPC reported values for strain and energy absorption capacity, albeit lower than those of traditional UHPC formulations with high cement, silica fume and quartz powder content, surpassing requirements for demanding applications such as seismic reinforcement of structures. Moreover, durability remains comparable to that of traditional UHPC. In addition, the reported life cycle analysis found that the utilization of glass powder in UHPC allows a greater reduction of embedded CO2 than other mineral additions in UHPC without jeopardizing its properties. In general, the review study presented herein underscores recycled glass’s potential in UHPC, offering economic and performance advantages in sustainable construction.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3