Effect of Negative Pulse on the Stability of Black Electrolytes for Magnesium Alloy Microarc Oxidation

Author:

Chen Bo1ORCID,Tong Rui1,Li Hongtao1ORCID,Wang Wenqiang1,Chen Xuanyu1ORCID,Wang Hao1,Yang Yifeng1,Zhou Shiquan1

Affiliation:

1. College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China

Abstract

The correlation between negative pulse and the black electrolyte properties of magnesium alloy micro-arc oxidation and the treated area was investigated by introducing a negative pulse electric field. The physical phase composition, microstructure, elemental distribution, and content of the coating were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The results showed that the introduction of negative pulses favored the generation of MgO and MgSiO3 contents in the coatings, and an increase in the MgO phase was found in the coatings formed in the failed electrolytes; the microporous size and microcracks of the coatings were gradually and significantly reduced; the average consumption of Cu ions was 0.0453 g/L·dm2, which is only 26% of that in the unipolar condition; the introduction of the negative pulses significantly improved the “anomalous consumption” of Cu ions. The introduction of negative pulse can significantly improve the “abnormal consumption” of copper ions, which is attributed to the change in the electric field by negative pulse, which makes the cathode-enriched Cu ions migrate to the anode and reduces the reduction and precipitation of Cu ions at the cathode.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3