Effect of Cyclic Ice Plug Deformation on Microstructure and Mechanical Behaviors of Nuclear-Grade Low-Carbon Tubular Steel

Author:

Hu Minglei1,Zhang Wei1,Xu Ke1,Hu Bin1,Li Dongsheng2,Wang Lan2,Liu Rencai2,Zhao Xiaohua2

Affiliation:

1. China Nuclear Power Operation Management Co., Ltd., Haiyan 314300, China

2. School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China

Abstract

This study subjected nuclear-grade 20# pipeline steel to cyclic freeze–thaw ice plugging tests, simulating the plastic deformation experienced by pipes during ice plug removal procedures. Subsequently, the dislocation morphology and mechanical properties of the specimens post cyclic ice plugging were examined. The cyclic ice plugging process led to an increase in the dislocation density within the specimens. After 20 and 40 cycles of ice plugging, the internal dislocation structures evolved from individual dislocation lines and dislocation tangles to high-density dislocation walls and dislocation cells. These high-density dislocation walls and cells hindered dislocation motion, giving rise to strain hardening phenomena, thereby resulting in increased strength and hardness of the specimens with an increasing number of ice plugging cycles. In addition, a large stress field was generated around the dislocation buildup, which reduced the pipe material’s plastic toughness. The findings elucidate the effects of cyclic ice plugging on the microstructure and properties of nuclear-grade 20# pipeline steel, aiming to provide a theoretical basis for the safe and stable application of ice plugging technology in nuclear piping systems.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3