Affiliation:
1. School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
2. Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
Abstract
Urea stands as a ubiquitous environmental contaminant. However, not only does urea oxidation reaction technology facilitate energy conversion, but it also significantly contributes to treating wastewater rich in urea. Furthermore, urea electrolysis has a significantly lower theoretical potential (0.37 V) compared to water electrolysis (1.23 V). As an electrochemical reaction, the catalytic efficacy of urea oxidation is largely contingent upon the catalyst employed. Among the plethora of urea oxidation electrocatalysts, nickel-based compounds emerge as the preeminent transition metal due to their cost-effectiveness and heightened activity in urea oxidation. Ni(OH)2 is endowed with manifold advantages, including structural versatility, facile synthesis, and stability in alkaline environments. This review delineates the recent advancements in Ni(OH)2 catalysts for electrocatalytic urea oxidation reaction, encapsulating pivotal research findings in morphology, dopant incorporation, defect engineering, and heterogeneous architectures. Additionally, we have proposed personal insights into the challenges encountered in the research on nickel hydroxide for urea oxidation, aiming to promote efficient urea conversion and facilitate its practical applications.
Funder
Natural Science Foundation of Chongqing
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献