Analysis of Underwater Melting Process and Leakage Plugging Performance of Phase-Change Materials

Author:

Zhang Shenghang12ORCID,Tang Lei12,Li Fei3,Li Po24,Sima Yao5,Zhao Song5

Affiliation:

1. The National Key Laboratory of Water Disaster Prevention, Nanjing 210029, China

2. Department of Materials and Structures, Nanjing Hydraulic Research Institute, Nanjing 210029, China

3. Jiangsu Provincial Flood Control and Drought Relief Center, Nanjing 210029, China

4. School of Civil Engineering, Tianjin University, Tianjin 300350, China

5. China Energy Engineering Group Second Engineering Co., Ltd., Nanchang 330000, China

Abstract

Leakage is a high-incidence disease of embankment dams, and efficiently addressing this disease guarantees the safe operation of dams. Underwater leakage self-priming plugging technology is a new technology that utilizes the melting and solidifying characteristics of phase-change materials and the negative pressure in the leakage entry area to accurately plug the leakage. However, little is yet known about the underwater melting process of phase-change materials and how their characteristics influence the plugging effect. In this study, three kinds of phase-change materials, namely, paraffin, rosin, and stearic acid, were used to conduct underwater leakage self-priming plugging tests, observe and analyze the underwater melting process, and compare the plugging effects. The results showed that the underwater melting process of phase-change materials exhibited different plugging window periods depending on their melting points, specific heat capacities, and mobilities, which were the main factors affecting their plugging effects. In the final plugging stage, paraffin had the best plugging effect, but the material strength was low; rosin had good plugging compactness, but the fluidity performance was poor, and the material effective utilization was low; stearic acid had a low melting point but dispersed easily. Therefore, a blocking material with a suitable blocking window period can be produced by adjusting the material properties accordingly for an improved blocking effect.

Funder

National Key Research and Development Program of China

Science and Technology Innovation Program from Water Resources of Guangdong Province

Water Conservancy Technology Demonstration Project

Special Fund Project of Basic Scientific Research Business Fee for Central Public Welfare Scientific Research Institutes

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3