The Influence of Microstructural Arrangement on the Failure Characteristics of 3D-Printed Polymers: Exploring Damage Behaviour in Acrylonitrile Butadiene Styrene

Author:

Guessasma Sofiane1ORCID,Belhabib Sofiane2

Affiliation:

1. INRAE, UR1268 Biopolymères Interactions Assemblages, F-44300 Nantes, France

2. Department of Mechanical Engineering, Nantes Université, CNRS, GEPEA, UMR 6144, F-44000 Nantes, France

Abstract

This study investigated how printing conditions influence the fracture behaviour of 3D-printed acrylonitrile butadiene styrene (ABS) under tensile loading. Dog-bone-shaped ABS specimens were produced using the fusion filament fabrication technique, with varying printing angles. Tensile tests were conducted on pre-notched specimens with consistent pre-notch lengths but different orientations. Optical and scanning electron microscopies were employed to analyse crack propagation in the pre-notched specimens. In order to support experimental evidence, finite element computation was implemented to study the damage induced by the microstructural rearrangement of the filaments when subject to tensile loading. The findings revealed the simple linear correlation between the failure properties including elongation at break and maximum stress in relation to the printing angle for different pre-notch lengths. A more progressive damage was found to support the ultimate performance of the studied material. This experiment evidence was used to build a damage model of 3D-printed ABS that accounts for the onset, growth, and damage saturation. This damage modelling is able to capture the failure properties as a function of the printing angle using a sigmoid-like damage function and a modulation of the stiffness within the raster. The numerical results demonstrated that damage pattern develops as a result of the filament arrangement and weak adhesion between adjacent filaments and explains the diffuse damage kinetics observed experimentally. This study concludes with a topological law relating the notch size and orientation to the rupture properties of 3D-printed ABS. This study supports the idea of tailoring the microstructural arrangement to control and mitigate the mechanical instabilities that lead to the failure of 3D-printed polymers.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3