Enhancing Adhesion and Reducing Ohmic Contact through Nickel–Silicon Alloy Seed Layer in Electroplating Ni/Cu/Ag

Author:

Wang Zhao12ORCID,Liu Haixia1,Chen Daming2,Wang Zigang2,Wu Kuiyi2,Cheng Guanggui1,Ding Yu1,Zhang Zhuohan2,Chen Yifeng2,Gao Jifan2,Ding Jianning13ORCID

Affiliation:

1. School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China

2. State Key Lab of Photovoltaic Science and Technology, Trina Solar Co., Ltd., Changzhou 213031, China

3. Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou 225127, China

Abstract

Due to the lower cost compared to screen-printed silver contacts, the Ni/Cu/Ag contacts formed by plating have been continuously studied as a potential metallization technology for solar cells. To address the adhesion issue of backside grid lines in electroplated n-Tunnel Oxide Passivating Contacts (n-TOPCon) solar cells and reduce ohmic contact, we propose a novel approach of adding a Ni/Si alloy seed layer between the Ni and Si layers. The metal nickel layer is deposited on the backside of the solar cells using electron beam evaporation, and excess nickel is removed by H2SO4:H2O2 etchant under annealing conditions of 300–425 °C to form a seed layer. The adhesion strength increased by more than 0.5 N mm−1 and the contact resistance dropped by 0.5 mΩ cm2 in comparison to the traditional direct plating Ni/Cu/Ag method. This is because the resulting Ni/Si alloy has outstanding electrical conductivity, and the produced Ni/Si alloy has higher adhesion over direct contact between the nickel–silicon interface, as well as enhanced surface roughness. The results showed that at an annealing temperature of 375 °C, the main compound formed was NiSi, with a contact resistance of 1 mΩ cm−2 and a maximum gate line adhesion of 2.7 N mm−1. This method proposes a new technical solution for cost reduction and efficiency improvement of n-TOPCon solar cells.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3