Abstract
In this work, the corrosion behaviors of the AZ31B alloy in Ringer’s solution at 20 °C and 37 °C were compared over four days to better understand the influence of temperature and immersion time on corrosion rate. The corrosion products on the surfaces of the AZ31B alloys were examined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). Electrochemical impedance spectroscopy (EIS) provided information about the protective properties of the corrosion layers. A significant acceleration in corrosion rate with increasing temperature was measured using mass loss and evolved hydrogen methods. This temperature effect was directly related to the changes in chemical composition and thickness of the Al-rich corrosion layer formed on the surface of the AZ31B alloy. At 20 °C, the presence of a thick (micrometer scale) Al-rich corrosion layer on the surface reduced the corrosion rate in Ringer’s solution over time. At 37 °C, the incorporation of additional Mg and Al compounds containing Cl into the Al-rich corrosion layer was observed in the early stages of exposure to Ringer’s solution. At 37 °C, a significant decrease in the thickness of this corrosion layer was noted after four days.
Subject
General Materials Science,Metals and Alloys
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献