Abstract
Within this work, the 3D plasma metal deposition (3DPMD) process is introduced as an additive manufacturing process for titanium components. For this purpose, demonstrators were designed, manufactured and subsequently analyzed. Process-structure-property relationships are discussed. By analyzing the microstructure, the chemical composition and the mechanical-technological properties, it is shown that the production of titanium parts with 3DPMD is possible. The micro tensile tests showed that a load parallel to the build direction is the most critical case for the component. Furthermore, a brittle material behavior could be determined due to enhanced oxygen content in the component. By subsequent heat treatment, the brittle failure behavior could be increased to a fracture elongation of 4.6%. In sum, the 3DPMD process has the potential to manufacture near-net-shape titanium parts out of metal powders. Critical issues are the protection of the weldment and the lack of ductility of the titanium component.
Subject
General Materials Science,Metals and Alloys
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献