Metal Oxide Nanoparticle-Based Coating as a Catalyzer for A-TIG Welding: Critical Raw Material Perspective

Author:

Balos Sebastian,Dramicanin Miroslav,Janjatovic PetarORCID,Zabunov Ivan,Klobcar DamjanORCID,Busic MatijaORCID,Grilli Maria LuisaORCID

Abstract

Besides a wide application in corrosion protection, wear resistance increase, providing thermal properties and power conversion, oxide coatings have found an alternative application in welding technology as catalysts of the tungsten inert gas (TIG) welding process. In this paper, the novel approach of fabricating a coating containing nanoparticles based on nanosized SiO2 and TiO2 and their mixtures was applied to the austenitic stainless-steel base metal. It was found that coatings increased depths of penetration, enabling a consumable-free welding. Using this method, the use of several critical and near-critical raw materials (e.g., Si and Cr), as well as the relatively expensive Ni can be completely avoided. The most effective coating in terms of weld penetration consisted of a mixture of nanoparticles, rather than unary oxide coatings based on nanoparticles. A model for liquid weld metal flow is proposed based on the metallographic examination of recrystallized grains and microhardnesses measured near the weld metal, supporting the reversed Marangoni convection theory.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3