Evaluation of Pedotransfer Functions to Estimate Soil Water Retention Curve: A Conceptual Review

Author:

Farooq Umar1,Ajmal Muhammad2ORCID,Li Shicheng1,Yang James1ORCID,Ullah Sana34ORCID

Affiliation:

1. Department of Civil & Architectural Engineering, KTH Royal Institute of Technology, 10044 Stockholm, Sweden

2. Department of Agricultural Engineering, University of Engineering & Technology Peshawar, Peshawar 25120, Pakistan

3. Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong

4. Beijing Key Laboratory of Space Information Integration and 3s Application, School of Earth and Space Science, Peking University, Beijing 100871, China

Abstract

The soil water retention curve (SWRC) is a vital soil property used to evaluate the soil’s water holding capacity, a critical factor in various applications such as determining soil water availability for plants, soil conservation and management, climate change adaptation, and mitigation of flood risks. Estimating SWRC directly in the field and laboratory is a time-consuming and laborious process and requires numerous instruments and measurements at a specific location. In this context, various estimation approaches have been developed, including pedotransfer functions (PTFs), over the past three decades to estimate soil water retention and its associated properties. Despite the efficiencies, PTFs and semi-physical approach-based models often have several limitations, particularly in the dry range of the SWRC. PTFs-based modeling has become a key research topic due to readily available soil data and cost-effective methods for deriving essential soil parameters, which enable more efficient decision-making in sustainable land-use management. Therefore, advancement and adjustment are necessary for reliable estimations of the SWRC from readily available data. This article reviews the evaluation of the current and past PTFs for estimating the SWRC. This study aims to evaluate PTF techniques and semi-physical approaches based on soil texture, bulk density, porosity, and other related factors. Additionally, it also assesses the performance and limitations of various common semi-physical models proposed and developed by Arya and Paris, Haverkamp and Parlange, the Modified Kovács model by Aubertin et al., Chang and Cheng, Meskini-Vishkaee et al., Vidler et al., and Zhai et al. This assessment will be effective for researchers in this field and provide valuable insight into the importance of new PTFs for modeling SWRC.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3