Experimental and Numerical Thermal Analysis of Multi-Layered Microchannel Heat Sink for Concentrating Photovoltaic Application

Author:

Al Siyabi Idris,Khanna Sourav,Sundaram Senthilarasu,Mallick TapasORCID

Abstract

Concentrating photovoltaic has a major challenge due to the high temperature raised during the process which reduces the efficiency of the solar cell. A multi-layered microchannel heat sink technique is considered more efficient in terms of heat removal and pumping power among many other cooling techniques. Thus, in the current work, multi-layered microchannel heat sink is used for concentrating photovoltaic cooling. The thermal behavior of the system is experimentally and numerically investigated. The results show that in extreme heating load of 30 W/cm2 with heat transfer fluid flow rate of 30 mL/min, increasing the number of layers from one to four reduces the heat source temperature from 88.55 to 73.57 °C. In addition, the single layered MLM heat sink suffers from the highest non-uniformity in the heat source temperature compared to the heat sinks with the higher number of layers. Additionally, the results show that increasing the number of layers from one to four reduces the pressure drop from 162.79 to 32.75 Pa.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3