Abstract
To analyze the interrelations among impeller blade geometry, flow field fluctuation intensity and impeller-induced hydrodynamic noise of jet centrifugal pump (JCP), a Gappy proper orthogonal decomposition (POD) method combined with computational fluid dynamics/computational fluid acoustics (CFD/CFA) technique was proposed to reconstruct and predict the unsteady flow field fluctuation intensity and flow-induced noise in impeller region. The snapshot sets were composed of blade profile parameters, flow field fluctuation intensity data and the data of sound pressure level of hydrodynamic noise in the frequency domain. Similar mesh reconstruction and flow field interpolation were carried out to have the same number of flow field data. The snapshot sets were decomposed into a linear combination of orthogonal bases using the singular value decomposition (SVD) method. The orthogonal basis coefficients corresponding to the objective variables were fitted by the least square method. The results show that the proposed method has a good accuracy in predicting the flow field fluctuation intensity and flow-induced noise of the JCP impeller domain. The relative error of pressure fluctuation intensity field is less than 4.0%, relative velocity fluctuation intensity field is less than 3.0%, turbulent kinetic energy fluctuation intensity field is less than 4.5%, and impeller-induced hydrodynamic noise is less than 10%. Taking the method as a surrogate model to predict the flow field fluctuation intensity and the radiation level of hydrodynamic noise in the optimization process of centrifugal pump impeller, it could not only reduce the calculation amount and time significantly and improve optimization speed and efficiency greatly but could also provide a reference for vibration characteristics of the models.
Funder
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献