Comparison and Optimization of Methane Hydrate Production Process Using Different Methods in a Single Vertical Well

Author:

Liang Yun-Pei,Liu Shu,Wan Qing-Cui,Li Bo,Liu Hang,Han Xiao

Abstract

Natural gas hydrate (NGH) is a potential type of clean and efficient energy that is widely distributed in the ocean and permafrost, and most of the present researches are mainly focused on finding out efficient exploitation methods. Taking the effects of natural gas productivity and extraction time into account, one of the exploitation methods that are most commonly investigated is depressurization combined with thermal stimulation. However, few studies considered the effect of different mining methods on NGH production in vertical wells, especially aiming at the in-situ electric heating without mass injection and the comparison of production efficiency in different modes. Considering the current research status, four exploitation methods which are pure depressurization (PD), pure heating (PH), simultaneous depressurization combined with electric heating (SDH) and huff and puff (H&P) were carried out in this paper to study the influences of different production methods on NGH exploitation in a vertical well. Some parameters such as gas production (VP), water production (CP) and the energy efficiency (η) were investigated to evaluate the production performance of these methods. The results suggest that the temperature in the reactor is affected by the exploitation methods as well as the water production during exploitation. For PD, although it has no extra energy consumption, the longest production period is seen in it due to the insufficient pressure driving force. On the contrary, the NGH cannot be completely exploited only triggered by heating driving force with PH method. So there is a limited decomposition effect with it. Taking the gas production time, the VP, and the NGH dissociation rate into account, the production effects of SDH are more beneficial than other methods as the dual decomposition driving force was adopted in it. Furthermore, a reasonable heating power can result in a better production performance. On the other hand, promoted by pressure difference and discontinuous heating, H&P shows its obvious advantage in shortening production duration and improving energy efficiency, which is therefore believed to have the best commercial exploitation value among the four methods.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3