Probabilistic Wind Power Forecasting Approach via Instance-Based Transfer Learning Embedded Gradient Boosting Decision Trees

Author:

Cai LongORCID,Gu Jie,Ma JinghuanORCID,Jin Zhijian

Abstract

With the high wind penetration in the power system, accurate and reliable probabilistic wind power forecasting has become even more significant for the reliability of the power system. In this paper, an instance-based transfer learning method combined with gradient boosting decision trees (GBDT) is proposed to develop a wind power quantile regression model. Based on the spatial cross-correlation characteristic of wind power generations in different zones, the proposed model utilizes wind power generations in correlated zones as the source problems of instance-based transfer learning. By incorporating the training data of source problems into the training process, the proposed model successfully reduces the prediction error of wind power generation in the target zone. To prevent negative transfer, this paper proposes a method that properly assigns weights to data from different source problems in the training process, whereby the weights of related source problems are increased, while those of unrelated ones are reduced. Case studies are developed based on the dataset from the Global Energy Forecasting Competition 2014 (GEFCom2014). The results confirm that the proposed model successfully improves the prediction accuracy compared to GBDT-based benchmark models, especially when the target problem has a small training set while resourceful source problems are available.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3