A Study on Urea-Water Solution Spray-Wall Impingement Process and Solid Deposit Formation in Urea-SCR de-NOx System

Author:

Shahariar G.M. Hasan,Lim Ock Taeck

Abstract

Selective catalytic reduction (SCR) has been exhibited as a promising method of NOx abatement from diesel engine emissions. Long-term durability is one of the key requirements for the automotive SCR system. A high NOx conversion, droplet distribution and mixing, and fluid film and solid deposit formation are the major challenges to the successful implementation of the SCR system. The current study is therefore three-fold. Firstly, high-speed images disclose detailed information of the spray impingement on the heated impingement surface. The spray impingement investigation took place in a specially-designed optically-accessible visualization chamber where the Z-type shadowgraph technique was used to capture the high-speed images. Wall temperature has a great influence on the film formation and wall wetting. A higher wall temperature can significantly increase the droplet evaporation, and consequently, wall wetting decreases. The numerical analysis was performed based on the Eulerian-Lagrangian approach using STAR CCM+ CFD code. Secondly, the resultant phenomena due to spray-wall impingement such as fluid film generation and transport, solid deposit formation, and thermal decomposition were recorded using a high-speed camera operating at a low frame rate. Infrared thermal imaging was used to observe the spray cooling effect after impingement. Spray impingement caused local cooling, which led to wall film formation, which introduced urea crystallization. Finally, solid deposits were analyzed and characterized using Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). FTIR analysis revealed that urea decomposition products vary based on the temperature, and undecomposed urea, biuret, cyanuric acid, ammeline, and melamine can be formed at different temperatures. TGA analysis showed that accumulated deposits were hard to remove. Moreover, complete thermal decomposition of deposits is not possible at the regular exhaust temperature, as it requires a comparatively long time span.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3