AI and Blockchain-Assisted Secure Data-Exchange Framework for Smart Home Systems

Author:

Shah Khush1ORCID,Jadav Nilesh Kumar1ORCID,Tanwar Sudeep1ORCID,Singh Anupam2ORCID,Pleșcan Costel3ORCID,Alqahtani  Fayez4ORCID,Tolba  Amr5ORCID

Affiliation:

1. Department of Computer Science and Engineering, Institute of Technology, Nirma University, Ahmedabad 382481, Gujarat, India

2. Department of Computer Science and Engineering, Graphic Era Hill University, Dehradun 248002, Uttarakhand, India

3. Department of Civil Engineering, Transilvania University of Braşov, 00036 Brașov, Romania

4. Software Engineering Department, College of Computer and Information Sciences, King Saud University, Riyadh 11437, Saudi Arabia

5. Computer Science Department, Community College, King Saud University, Riyadh 11437, Saudi Arabia

Abstract

The rapid expansion of the Internet of Things (IoT) on a global scale has facilitated the convergence of revolutionary technologies such as artificial intelligence (AI), blockchain, and cloud computing. The integration of these technologies has paved the way for the development of intricate infrastructures, such as smart homes, smart cities, and smart industries, that are capable of delivering advanced solutions and enhancing human living standards. Nevertheless, IoT devices, while providing effective connectivity and convenience, often rely on traditional network interfaces that can be vulnerable to exploitation by adversaries. If not properly secured and updated, these legacy communication protocols and interfaces can expose potential vulnerabilities that attackers may exploit to gain unauthorized access, disrupt operations, or compromise sensitive data. To overcome the security challenges associated with smart home systems, we have devised a robust framework that leverages the capabilities of both AI and blockchain technology. The proposed framework employs a standard dataset for smart home systems, from which we first eliminated the anomalies using an isolation forest (IF) algorithm using random partitioning, path length, anomaly score calculation, and thresholding stages. Next, the dataset is utilized for training classification algorithms, such as K-nearest neighbors (KNN), support vector machine (SVM), linear discriminate analysis (LDA), and quadratic discriminant analysis (QDA) to classify the attack and non-attack data of the smart home system. Further, an interplanetary file system (IPFS) is utilized to store classified data (non-attack data) from classification algorithms to confront data-manipulation attacks. The IPFS acts as an onsite storage system, securely storing non-attack data, and its computed hash is forwarded to the blockchain’s immutable ledger. We evaluated the proposed framework with different performance parameters. These include training accuracy (99.53%) by the KNN classification algorithm and 99.27% by IF for anomaly detection. Further, we used the validation curve, lift curve, execution cost of blockchain transactions, and scalability (86.23%) to showcase the effectiveness of the proposed framework.

Funder

Researchers Supporting Project

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3