A Modified Gradient Search Rule Based on the Quasi-Newton Method and a New Local Search Technique to Improve the Gradient-Based Algorithm: Solar Photovoltaic Parameter Extraction

Author:

Mahmood Bushra Shakir1,Hussein Nazar K.1ORCID,Aljohani Mansourah2,Qaraad Mohammed34ORCID

Affiliation:

1. Department of Mathematics, College of Computer Sciences and Mathematics, Tikrit University, Tikrit 34001, Iraq

2. College of Computer Science and Engineering, Taibah University, Yanbu 46421, Saudi Arabia

3. Computer Science Department, Faculty of Science, Abdelmalek Essaadi University, Tetouan 93000, Morocco

4. Department of Computer Science, Faculty of Science, Amran University, Amran 9677, Yemen

Abstract

Harnessing solar energy efficiently via photovoltaic (PV) technology is pivotal for future sustainable energy. Accurate modeling of PV cells entails an optimization problem due to the multimodal and nonlinear characteristics of the cells. This study introduces the Multi-strategy Gradient-Based Algorithm (MAGBO) for the precise parameter estimation of solar PV systems. MAGBO incorporates a modified gradient search rule (MGSR) inspired by the quasi-Newton approach, a novel refresh operator (NRO) for improved solution quality, and a crossover mechanism balancing exploration and exploitation. Validated through CEC2021 test functions, MAGBO excelled in global optimization. To further validate and underscore the reliability of MAGBO, we utilized data from the PVM 752 GaAs thin-film cell and the STP6-40/36 module. The simulation parameters were discerned using 44 I-V pairs from the PVM 752 cell and diverse data from the STP6-40/36 module tested under different conditions. Consistency between simulated and observed I-V and P-V curves for the STM6-40/36 and PVM 752 models validated MAGBO’s accuracy. In application, MAGBO attained an RMSE of 9.8 × 10−4 for double-diode and single-diode modules. For Photowatt-PWP, STM6-40/36, and PVM 752 models, RMSEs were 2.4 × 10−3, 1.7 × 10−3, and 1.7 × 10−3, respectively. Against prevalent methods, MAGBO exhibited unparalleled precision and reliability, advocating its superior utility for intricate PV data analysis.

Funder

Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3