Spatial Behavior of Solutions in Linear Thermoelasticity with Voids and Three Delay Times

Author:

Carini Manuela1ORCID,Zampoli Vittorio2ORCID

Affiliation:

1. DIAM (Department of Environmental Engineering), University of Calabria, via Pietro Bucci, 87036 Arcavacata di Rende, Italy

2. DIEM (Department of Information and Electrical Engineering and Applied Mathematics), University of Salerno, via Giovanni Paolo II, 84084 Fisciano, Italy

Abstract

This brief contribution aims to complement a study of well-posedness started by the same authors in 2020, showing—for that same mathematical model—the existence of a domain of influence of external data. The object of investigation, we recall, is a linear thermoelastic model with a porous matrix modeled on the basis of the Cowin–Nunziato theory, and for which the heat exchange phenomena are intended to obey a time-differential heat transfer law with three delay times. We therefore consider, without reporting it explicitly, the (suitably adapted) initial-boundary value problem formulated at that time, as well as some analytical techniques employed to handle it in order to address the uniqueness and continuous dependence questions. Here, a domain of influence theorem is proven, showing the spatial behavior of the solution in a cylindrical domain, by activating the hypotheses that make the model thermodynamically consistent. The theorem, in detail, demonstrates that for a finite time t>0, the assigned external (thermomechanical) actions generate no disturbance outside a bounded domain contained within the cylindrical region of interest. The length of the work is deliberately kept to a minimum, having opted where possible for bibliographic citations in favor of greater reading fluency.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3