Resultant Normal Contact Force-Based Contact Friction Model for the Combined Finite-Discrete Element Method and Its Validation

Author:

Liu He12,Shao Zuliang1,Lin Qibin1ORCID,Lei Yiming2,Du Chenglei2,Pan Yucong2

Affiliation:

1. School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, China

2. Key Laboratory of Safety for Geotechnical and Structural Engineering of Hubei Province, School of Civil Engineering, Wuhan University, Wuhan 430072, China

Abstract

In the conventional FDEM (Combined Finite and Discrete Element Method), each contact pair might have multiple contact points where friction forces are applied, leading to non-unique friction force assignments and potentially introducing computational errors. This study introduces a new contact friction algorithm for FDEM based on the resultant normal contact force. This method necessitates determining the friction force at a unique equivalent contact point, thereby significantly simplifying the computational flow and reducing memory usage. A series of numerical tests are performed to validate the effectiveness of the proposed contact model. Using collision and block sliding tests, the proposed contact friction model is verified to be able to accurately capture the frictional effect between discrete bodies and circumvent the problematic kinetic energy dissipation issue associated with the original contact friction algorithm. For the Brazilian splitting and uniaxial compression tests, the simulated results closely align with those generated using the original contact friction algorithm and match the experimental measurements well, demonstrating the applicability of the proposed algorithm in fracturing analysis. Furthermore, by using the proposed contact friction algorithm, a computational efficiency enhancement of 8% in contact force evaluation can be achieved.

Funder

Young Scholars Program of the National Natural Science Foundation of China

Natural Science Foundation of Hunan Province, China

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An efficient Kriging-based calibration framework for FDEM;Engineering Fracture Mechanics;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3