Taylor DQN: An Optimization Method for Aircraft Engine Cleaning Schedule

Author:

Wang Rui12ORCID,Guo Xiangyu23,Yan Zhiqi4,Chen Dongqi5

Affiliation:

1. School of Ocean Engineering, Harbin Institute of Technology at Weihai, Weihai 264209, China

2. Weihai Key Laboratory of Intelligent Operation and Maintenance, Harbin Institute of Technology, Weihai 264209, China

3. School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China

4. Aeronautical Engineering Institute, Civil Aviation University of China, Tianjin 061102, China

5. Juxian Agricultural Machinery Development Service Center, Rizhao 222113, China

Abstract

Reducing carbon emissions and improving revenue in the face of global warming and economic challenges is a growing concern for airlines. This paper addresses the inefficiencies and high costs associated with current aero-engine on-wing washing strategies. To tackle this issue, we propose a reinforcement learning framework consisting of a Similar Sequence Method and a Taylor DQN model. The Similar Sequence Method, comprising a sample library, DTW algorithm, and boundary adjustment, predicts washed aero-engine data for the Taylor DQN model. Leveraging the proposed Taylor neural networks, our model outputs Q-values to make informed washing decisions using data from the Similar Sequence Method. Through simulations, we demonstrate the effectiveness of our approach.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference31 articles.

1. Meher-Homji, C.B., and Bromley, A. (2004). 33rd Turbomachinery Symposium, Texas A&M University, Turbomachinery Laboratories.

2. A review of gas turbine online washing systems;Mund;ASME,2004

3. Experimental and theoretical investigation of the influence of liquid droplet size on effectiveness of online compressor cleaning for industrial gas turbines;Agbadede;J. Energy Inst.,2015

4. Maintenance, Repair, and Overhaul;Rahilly;Gas Turbines,2015

5. Highly imbalanced fault diagnosis of gas turbines via clustering-based downsampling and deep siamese self-attention network;Liu;Adv. Eng. Inform.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3