An Innovative Numerical Method Utilizing Novel Cubic B-Spline Approximations to Solve Burgers’ Equation

Author:

Ali Ishtiaq1ORCID,Yaseen Muhammad2ORCID,Abdullah Muhammad2,Khan Sana2,Belgacem Fethi Bin Muhammad3ORCID

Affiliation:

1. Department of Mathematics and Statistics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia

2. Department of Mathematics, University of Sargodha, Sargodha 40100, Pakistan

3. Department of Mathematics, Faculty of Basic Education, Public Authority for Applied Education and Training, Al-Ardhiya 92400, Kuwait

Abstract

Burgers’ equation is a nonlinear partial differential equation that appears in various areas of physics and engineering. Finding accurate and efficient numerical methods to solve this equation is crucial for understanding complex fluid flow phenomena. In this study, we propose a spline-based numerical technique for the numerical solution of Burgers’ equation. The space derivative is discretized using cubic B-splines with new approximations for the second order. Typical finite differences are used to estimate the time derivative. Additionally, the scheme undergoes a stability study to ensure minimal error accumulation, and its convergence is investigated. The primary advantage of this scheme is that it generates an approximate solution as a smooth piecewise continuous function, enabling approximation at any point within the domain. The scheme is subjected to a numerical study, and the obtained results are compared to those previously reported in the literature to demonstrate the effectiveness of the proposed approach. Overall, this study aims to contribute to the development of efficient and accurate numerical methods for solving Burgers’ equation. The spline-based approach presented herein has the potential to advance our understanding of complex fluid flow phenomena and facilitate more reliable predictions in a range of practical applications.

Funder

Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3