Affiliation:
1. School of Economics and Management, Beijing University of Chemical Technology, Beijing 100029, China
Abstract
Urban rail transit offers advantages such as high safety, energy efficiency, and environmental friendliness. With cities rapidly expanding, travelers are increasingly using rail systems, heightening demands for passenger capacity and efficiency while also pressuring these networks. Passenger flow forecasting is an essential part of transportation systems. Short-term passenger flow forecasting for rail transit can estimate future station volumes, providing valuable data to guide operations management and mitigate congestion. This paper investigates short-term forecasting for Suzhou’s Shantang Street station. Shantang Street’s high commercial presence and distinct weekday versus weekend ridership patterns make it an interesting test case, making it a representative subway station. Wavelet denoising and Long Short Term Memory (LSTM) were combined to predict short-term flows, comparing the results to those of standalone LSTM, Support Vector Regression (SVR), Artificial Neural Network (ANN), and Autoregressive Integrated Moving Average Model (ARIMA). This study illustrates that the algorithms adopted exhibit good performance for passenger prediction. The LSTM model with wavelet denoising proved most accurate, demonstrating applicability for short-term rail transit forecasting and practical significance. The research findings can provide fundamental recommendations for implementing appropriate passenger flow control measures at stations and offer effective references for predicting passenger flow and mitigating traffic pressure in various cities.
Funder
National Natural Science Foundation of China
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference44 articles.
1. Short-term passenger flow prediction under passenger flow control using a dynamic radial basis function network;Li;Appl. Soft Comput.,2019
2. Short-time passenger flow classification prediction of urban rail stations based on Combined model;Wang;J. Railw. Sci. Eng.,2023
3. Lei, J., He, M., and Shuai, C. (2019, January 6–8). A comparison study of short-term passenger flow forecast model of rail transit. Proceedings of the 19th COTA International Conference of Transportation Professionals (CICTP 2019), Nanjing, China.
4. Forecasting the Subway Passenger Flow under Event Occurrences with Social Media;Ni;IEEE Trans. Intell. Transp. Syst.,2016
5. Roos, J., Bonnevay, S., and Gavin, G. (2016, January 18–20). Short-term rail passenger flow forecasting: A Dynamic Bayesian network approach. Proceedings of the 15th IEEE International Conference on Machine Learning and Application, Anaheim, CA, USA.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献