A Novel Dehumidification Strategy to Reduce Liquid Fraction and Condensation Loss in Steam Turbines

Author:

Yang YanORCID,Peng Haoping,Wen ChuangORCID

Abstract

Massive droplets can be generated to form two-phase flow in steam turbines, leading to erosion issues to the blades and reduces the reliability of the components. A condensing two-phase flow model was developed to assess the flow structure and loss considering the nonequilibrium condensation phenomenon due to the high expansion behaviour in the transonic flow in linear blade cascades. A novel dehumidification strategy was proposed by introducing turbulent disturbances on the suction side. The results show that the Wilson point of the nonequilibrium condensation process was delayed by increasing the inlet superheated level at the entrance of the blade cascade. With an increase in the inlet superheated level of 25 K, the liquid fraction and condensation loss significantly reduced by 79% and 73%, respectively. The newly designed turbine blades not only remarkably kept the liquid phase region away from the blade walls but also significantly reduced 28.1% averaged liquid fraction and 47.5% condensation loss compared to the original geometry. The results provide an insight to understand the formation and evaporation of the condensed droplets inside steam turbines.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3