Abstract
Massive droplets can be generated to form two-phase flow in steam turbines, leading to erosion issues to the blades and reduces the reliability of the components. A condensing two-phase flow model was developed to assess the flow structure and loss considering the nonequilibrium condensation phenomenon due to the high expansion behaviour in the transonic flow in linear blade cascades. A novel dehumidification strategy was proposed by introducing turbulent disturbances on the suction side. The results show that the Wilson point of the nonequilibrium condensation process was delayed by increasing the inlet superheated level at the entrance of the blade cascade. With an increase in the inlet superheated level of 25 K, the liquid fraction and condensation loss significantly reduced by 79% and 73%, respectively. The newly designed turbine blades not only remarkably kept the liquid phase region away from the blade walls but also significantly reduced 28.1% averaged liquid fraction and 47.5% condensation loss compared to the original geometry. The results provide an insight to understand the formation and evaporation of the condensed droplets inside steam turbines.
Funder
National Natural Science Foundation of China
Subject
General Physics and Astronomy
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献