Fabricating Air Pressure Sensors in Hollow-Core Fiber Using Femtosecond Laser Pulse

Author:

Liu Changning,Tao Wuqiang,Chen Cong,Liao Yang

Abstract

In this paper, a hollow core fiber was spliced with standard single-mode fibers to form a fiber optic gas pressure sensor, and its sensing characteristics with single hole or multi-holes punched on the hollow core fiber with femtosecond laser pulses were investigated. The experiments demonstrate that the air pressure sensitivity of the single hole sensor was −3.548 nm/MPa, with a linearity of 99.45%, while its response times for air pressure’s rise and fall were 4.25 s and 2.52 s, respectively. The air pressure sensitivity of the ten-hole sensor was up to −3.786 nm/MPa, with a linearity of 99.47%, while its response times for air pressure’s rise and fall were 2.17 s and 1.30 s, respectively. Theoretical analysis and experimental results indicate that the pressure sensitivity of the sensor with an anti-resonant reflecting guidance mechanism mainly comes from the refractive index change of the air inside the hollow core fiber. The proposed device with multi-holes drilled by a femtosecond laser has the advantages of fabrication simplicity, low cost, fast response time, good structural robustness, high repeatability, high sensitivity to air pressure, and insensitivity to temperature (only 10.3 pm/°C), which makes it attractive for high pressure sensing applications in harsh environments.

Funder

National Natural Science Foundation of China

Program for Innovative Teams of Outstanding Young and Middle-aged Researchers in the Higher Education Institutions of Hubei Province

Open Fund of Laboratory of Solid-State Microstructures

foundation of Graduate Innovation Research of Hubei Normal University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3