On the Behavior of Honeycomb, Grid and Triangular PLA Structures under Symmetric and Asymmetric Bending

Author:

Cojocaru VasileORCID,Frunzaverde DoinaORCID,Miclosina Calin-OctavianORCID

Abstract

Additive manufacturing technologies enable the production of components with lightweight cores, by means of infills with various patterns and densities. Together with reduced mass and material consumption, infill geometries must ensure that strength and stiffness conditions are fulfilled. For the proper correlation of the infill type with the loading case of the part, the mechanical behavior of the infill along all three principal axes of inertia has to be known. In this paper, the behavior in symmetric and asymmetric bending of three infill geometries, commonly used in 3D printing processes (honeycomb, grid and triangles) is analyzed. The variations of deflections as a function of force orientation are presented, showing that honeycomb and triangular structures exhibit similar behaviors along the Y and Z principal axes of inertia. Furthermore, the displacements obtained for the three types of structures are compared, in relation to the consumed volume of material. The larger displacements of the grid structure compared to the honeycomb and triangular structures are highlighted.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3