Computational Analysis of Machining Induced Stress Distribution during Dry and Cryogenic Orthogonal Cutting of 7075 Aluminium Closed Cell Syntactic Foams

Author:

Thomas Kevin K.ORCID,Kannan Sathish,Pervaiz SalmanORCID,Nazzal MohammadORCID,Karthikeyan RamanujamORCID

Abstract

The addition of hollow aluminium oxide bubbles to the 7075 aluminium matrix results in a lightweight syntactic foam with a reduced density and an increased peak compression strength. The presence of ceramic bubbles also aids in a reduced coefficient of thermal expansion and thermal conductivity in comparison to aluminium alloys. In spite of their enhanced material properties, the inclusion of hollow aluminium oxide bubbles presents the challenge of poor machinability. In order to elucidate the problem of poor surface machinability, an attempt has been made to develop a thermo-mechanical finite element machining model using AdvantEdgeTM software with which surface quality and machined syntactic foam material can be analyzed. If the novel model developed is combined with virtual reality technology, CNC technicians can observe the machining results to evaluate and optimize the machining program. The main novelty behind this software is that the material foam is assumed as a homogeneous material model for simplifying the material model as a complex heterogeneous material system. The input parameters used in this study are cutting speed, feed, average size and volume fraction of hollow aluminium oxide bubbles, and coolant. For the output parameters, the numerical analysis showed a 6.24% increase in peak tensile machining induced stress as well as a 51.49% increase in peak cutting temperature as cutting speed (25 m/min to 100 m/min) and uncut chip thickness (0.07 mm to 0.2 mm) were increased. The average size and volume fraction of hollow aluminium oxide bubbles showed a significant impact on the magnitude of cutting forces and the depth of tensile induced stress distribution. It was observed on the machined surface that, as the average size of hollow aluminium oxide bubbles became coarser, the peak machining induced tensile stress on the cut surface reduced by 4.47%. It was also noted that an increase in the volume fraction of hollow aluminium oxide bubbles led to an increase in both the peak machining induced tensile stress and the peak cutting temperature by 29.36% and 20.11%, respectively. This study also showed the influence of the ceramic hollow bubbles on plastic deformation behavior in 7075 aluminium matrix; the machining conditions for obtaining a favorable stress distribution in the machined surface and sub-surface of 7075 closed cell syntactic foam are also presented.

Funder

American University of Sharjah

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of dry cutting technology based on green manufacturing;Fourth International Conference on Mechanical, Electronics, and Electrical and Automation Control (METMS 2024);2024-06-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3