Performance Testing of Micro-Electromechanical Acceleration Sensors for Pavement Vibration Monitoring

Author:

Ye ZhoujingORCID,Wei Ya,Yang Biyu,Wang Linbing

Abstract

Pavement vibration monitoring under vehicle loads can be used to acquire traffic information and assess the health of pavement structures, which contributes to smart road construction. However, the effectiveness of monitoring is closely related to sensor performance. In order to select the suitable acceleration sensor for pavement vibration monitoring, a printed circuit board (PCB) with three MEMS (micro-electromechanical) accelerometer chips (VS1002, MS9001, and ADXL355) is developed in this paper, and the circuit design and software development of the PCB are completed. The experimental design and comparative testing of the sensing performance of the three MEMS accelerometer chips, in terms of sensitivity, linearity, noise, resolution, frequency response, and temperature drift, were conducted. The results show that the dynamic and static calibration methods of the sensitivity test had similar results. The influence of gravitational acceleration should be considered when selecting the range of the accelerometer to avoid the phenomenon of over-range. The VS1002 has the highest sensitivity and resolution under 3.3 V standard voltage supply, as well as the best overall performance. The ADXL355 is virtually temperature-independent in the temperature range from −20 °C to 60 °C, while the voltage reference values output by the VS1002 and MS9001 vary linearly with temperature. This research contributes to the development of acceleration sensors with high precision and long life for pavement vibration monitoring.

Funder

the National Natural Science Foundation of China

the National Key Research and Development Plan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Non-destructive testing of concrete layer adhesion by means of vibration measurement;Construction and Building Materials;2024-01

2. A Design of Network Based Platform for the Diagnosis of Beam-Type Structure;2023 IEEE 6th International Conference on Knowledge Innovation and Invention (ICKII);2023-08-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3