Homocysteine Disrupts Balance between MMP-9 and Its Tissue Inhibitor in Diabetic Retinopathy: The Role of DNA Methylation

Author:

Mohammad Ghulam,Kowluru Renu A.ORCID

Abstract

High homocysteine is routinely observed in diabetic patients, and this non-protein amino acid is considered as an independent risk factor for diabetic retinopathy. Homocysteine biosynthesis from methionine forms S-adenosyl methionine (SAM), which is a major methyl donor critical in DNA methylation. Hyperhomocysteinemia is implicated in increased oxidative stress and activation of MMP-9, and in diabetic retinopathy, the activation of MMP-9 facilitates capillary cell apoptosis. Our aim was to investigate the mechanism by which homocysteine activates MMP-9 in diabetic retinopathy. Human retinal endothelial cells, incubated with/without 100 μM homocysteine, were analyzed for MMP-9 and its tissue inhibitor Timp1 expressions and interactions, and ROS levels. Timp1 and MMP-9 promoters were analyzed for methylated and hydroxymethylated cytosine levels (5mC and 5hmC respectively) by the DNA capture method, and DNA- methylating (Dnmt1) and hydroxymethylating enzymes (Tet2) binding by chromatin immunoprecipitation. The results were confirmed in retinal microvessels from diabetic rats receiving homocysteine. Homocysteine supplementation exacerbated hyperglycaemia-induced MMP-9 and ROS levels and decreased Timp1 and its interactions with MMP-9. Homocysteine also aggravated Dnmts and Tets activation, increased 5mC at Timp1 promoter and 5hmC at MMP-9 promoter, and suppressed Timp1 transcription and activated MMP-9 transcription. Similar results were obtained from retinal microvessels from diabetic rats receiving homocysteine. Thus, hyperhomocysteinemia in diabetes activates MMP-9 functionally by reducing Timp1-MMP-9 interactions and transcriptionally by altering DNA methylation-hydroxymethylation of its promoter. The regulation of homocysteine could prevent/slow down the development of retinopathy and prevent their vision loss in diabetic patients.

Funder

National Eye Institute

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3