Potent Impact of Plastic Nanomaterials and Micromaterials on the Food Chain and Human Health

Author:

Wang Yung-Li,Lee Yu-HsuanORCID,Chiu I-Jen,Lin Yuh-FengORCID,Chiu Hui-Wen

Abstract

Plastic products are inexpensive, convenient, and are have many applications in daily life. We overuse plastic-related products and ineffectively recycle plastic that is difficult to degrade. Plastic debris can be fragmented into smaller pieces by many physical and chemical processes. Plastic debris that is fragmented into microplastics or nanoplastics has unclear effects on organismal systems. Recently, this debris was shown to affect biota and to be gradually spreading through the food chain. In addition, studies have indicated that workers in plastic-related industries develop many kinds of cancer because of chronic exposure to high levels of airborne microplastics. Microplastics and nanoplastics are everywhere now, contaminating our water, air, and food chain. In this review, we introduce a classification of plastic polymers, define microplastics and nanoplastics, identify plastics that contaminate food, describe the damage and diseases caused by microplastics and nanoplastics, and the molecular and cellular mechanisms of this damage and disease as well as solutions for their amelioration. Thus, we expect to contribute to the understanding of the effects of microplastics and nanoplastics on cellular and molecular mechanisms and the ways that the uptake of microplastics and nanoplastics are potentially dangerous to our biota. After understanding the issues, we can focus on how to handle the problems caused by plastic overuse.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 121 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3