A Ternary Seismic Metamaterial for Low Frequency Vibration Attenuation

Author:

Chen ChenORCID,Lei JinchengORCID,Liu ZishunORCID

Abstract

Structural vibration induced by low frequency elastic waves presents a great threat to infrastructure such as buildings, bridges, and nuclear structures. In order to reduce the damage of low frequency structural vibration, researchers proposed the structure of seismic metamaterial, which can be used to block the propagation of low frequency elastic wave by adjusting the frequency range of elastic wave propagation. In this study, based on the concept of phononic crystal, a ternary seismic metamaterial is proposed to attenuate low frequency vibration by generating band gaps. The proposed metamaterial structure is periodically arranged by cube units, which consist of rubber coating, steel scatter, and soft matrix (like soil). The finite element analysis shows that the proposed metamaterial structure has a low frequency band gap with 8.5 Hz bandwidth in the range of 0–20 Hz, which demonstrates that the metamaterial can block the elastic waves propagation in a fairly wide frequency range within 0–20 Hz. The frequency response analysis demonstrates that the proposed metamaterial can effectively attenuate the low frequency vibration. A simplified equivalent mass–spring model is further proposed to analyze the band gap range which agrees well with the finite element results. This model provides a more convenient method to calculate the band gap range. Combining the proposed equivalent mass–spring model with finite element analysis, the effect of material parameters and geometric parameters on the band gap characteristic is investigated. This study can provide new insights for low frequency vibration attenuation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3